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Abstract

Communication between wireless devices ought to be as

simple as possible; they should be able to seamlessly switch

between different radios and network stacks on the fly in or-

der to better serve the user. To make this a possibility, we

consider the challenging problem of predicting link quality

in a changing mobile environment. In this paper we present

an algorithm that uses Weighted Least Squares Regression

to predict whether a given link can meet application re-

quirements in terms of throughput, delay, and jitter. We use

a simulation study to demonstrate that our algorithm is able

to predict link quality accurately and stably in a frequently

changing mobile environment. The prediction algorithm is

more accurate than several alternative algorithms, and the

overhead caused by the link measurements is negligible in

terms of throughput and power consumption.

1. Introduction

Wireless devices ought to make it easier for users to com-

municate with each other. Complicating this vision, how-

ever, is the reality that no single wireless technology domi-

nates the market nor provides the desired functionality in all

situations. Cellular, WiFi, and Bluetooth interfaces are all

used for different situations today. It is likely that wireless

technologies will continue to proliferate and that devices

will continue to contain multiple radios and network stacks.

To cope with this reality, devices ought to be able to

seamlessly switch between available network connections

on the fly in order to provide access to available services.

For example, if a person wants to transfer images from a

cellphone to a laptop, the devices should cooperate to make

this happen however they can, regardless of whether this uti-

lizes a Bluetooth or WiFi connection. Furthermore, as the

availability or quality of a connection changes due to the

activity of other nodes or interference from other devices,

devices should cooperate to switch to the best available in-

terface, taking into account power and performance trade-

offs. In other words, wireless devices should exploit their

heterogeneity in order to provide better service to end users.

This kind of communication should “just work”, rather than

requiring the user to be involved.

In this paper, we focus on one aspect of radio selection,

the ability to predict the availability and performance char-

acteristics of each available interface. This is a key issue,

since in many cases, wireless devices have several different

radios to choose from, and need some mechanism for deter-

mining which interface is likely to satisfy the application in

the near future.

Predicting link availability has received significant atten-

tion in ad hoc wireless networks, where it is principally used

to help routing protocols provide stable routes [6, 3, 1]. In

this work, nodes use a single WiFi radio and cooperate to

maintain network connectivity. Each node tries to predict

the probability that a link to its neighbor will continue to be

available for some time into the future. The routing proto-

col then uses this metric to compute routes that will remain

available for the longest time; this has shown to be more

effective than using shortest path routing.

The issues we face in designing for heterogeneous wire-

less devices differ from this previous work in several funda-

mental ways. The main difference is that we are interested

in predicting link quality, rather than simply link availabil-

ity. With a single interface and a network of homogeneous

devices, maintaining connectivity is most important. How-

ever, with multiple available interfaces between two com-

municating devices, our goal is to choose the interface that

can best meet application requirements. Accordingly, we

try to predict whether a link will meet the throughput, de-

lay, and jitter requirements of a particular application.

Another difference with previous work is that we are

considering devices in which each interface may potentially

have its own network stack. For example, WiFi interfaces

typically use a TCP/IP stack, but Bluetooth interfaces have

their own stack. This means that we must devise a general

algorithm that does not depend on a particular technology.



We must also handle interference as a common occurrence,

since different technologies may share the same frequen-

cies.

In this paper, we present a link quality prediction algo-

rithm using Weighted Least Square Regression (WLSR).

The algorithm allows mobile devices with multiple radios

to statistically predict link quality based on a series of past

measurements. Because the algorithm is sensitive to regres-

sion weights and the measurement window size, we use a

simulation to determine good settings for these parameters.

We also develop a method to compute an ideal prediction

curve so that we can compare prediction accuracy of vari-

ous algorithms.

Our simulation results demonstrate that the WLSR al-

gorithm is able to predict link quality accurately and sta-

bly in a frequently changing mobile environment. The pre-

diction algorithm is more accurate than several alternative

algorithms, and the overhead caused by the link measure-

ments is negligible in terms of throughput and power con-

sumption.

We demonstrate the utility of our prediction algorithm by

using it in a radio switching architecture that enables multi-

radio devices to switch to a different radio when the current

one becomes unavailable due to mobility or interference.

This combination allows devices to increase throughput or

lower power consumption, based on user preference.

2. Link Quality Prediction

Consider two devices – a laptop and a PDA, for example

– each with a WiFi and a Bluetooth interface. The key con-

cept we explore in this paper is how to predict the quality

of each interface so that the device can dynamically choose

the one that is most likely to meet application requirements.

We use three metrics to express application QoS require-

ments: throughput, delay, and jitter. The application speci-

fies its requirements in terms of a threshold that must be met

– if the link can support these requirements, then it is said

to be “qualified” for that application. The device then se-

lects the best qualified link based on user preference, which

could for example favor performance or power savings.

2.1. Link Quality Measurements

To determine the quality of a link between two devices,

we periodically send link-layer assessment queries from

one device to another. To make a query, the primary device

sends a link quality request to the secondary device using

the appropriate network stack, requesting its real-time qual-

ity information. Upon receiving the request, the secondary

device measures it signal-to-noise ratio (SNR) and includes

this in a link quality response using the same radio.

To compute the throughput of the link, the primary de-

vice averages its own SNR with the value in the response.

It then uses this average to estimate the throughput of the

link using Shannon’s capacity formula in a Rayleigh Fad-

ing Environment [5]. Using this estimate provides an upper

bound on capacity, ensuring that the system will never con-

clude that a link is unqualified when it is actually suitable.

In addition, this method uses little power and overhead as

compared to measuring the channel over a sustained period

of time.

The primary device uses the round-trip time for the re-

quest and response as a measure of the link delay. The jitter

is calculated as the difference between the delay for this re-

quest and the previous request.

To ensure the accuracy of our measurements, both the

request and response are given priority in the device OS,

so that the round-trip time gives an accurate measure of

link delay, including any MAC negotiation. In addition, we

pause active data traffic during the query to avoid any con-

flicts that might occur if multiple radios in a single device

attempted to operate concurrently.

For this paper, we use a fixed query interval of 1 second.

As part of our future work we will consider dynamically

varying the query interval during stable periods, to reduce

overhead and conserve battery life.

2.2. Prediction Algorithm

The wireless device keeps a window of past measure-

ments and then tries to predict future link quality based on

these measurements. The window contents are kept in FIFO

order, so that a new measurement replaces the oldest mea-

surement.

We develop a prediction algorithm based on the

Weighted Least Square Regression (WLSR) algorithm [2].

WLSR is an efficient prediction method that makes good

use of small data sets. The only state required is the set of

measurements considered (we use 5 to 30 measurements),

and the algorithm can be implemented with about a hun-

dred lines of code. No training or learning is required.

Because WLSR applies weights to the measurements, we

can treat them with different levels of importance accord-

ing to their ages. This makes WLSR well-suited for a fre-

quently changing mobile environment, since only recent

performance measurements are useful in predicting future

availability.

The WLSR algorithm takes as input a window of mea-

surements for a given QoS metric and predicts the value

of the metric for the next scheduled measurement period

(e.g. 1 second in the future). This prediction includes both

a mean and a standard deviation.

To predict whether a link can meet an application’s QoS

requirements, we construct a probability density function



Figure 1. Qualification probability

(pdf) for each metric at the prediction time, using the pre-

dicted mean and standard deviation. We use a t distribution

for the pdf since the sampled data set is small. The qual-

ification probability, Pqual, is the area under the pdf that

meets the threshold (to the right for throughput and to the

left for delay and jitter). We consider the link to be quali-

fied for this metric if Pqual is at least 50% of the total area.

This is equivalent to the mean of the pdf meeting the QoS

threshold for the metric under consideration. This process

is illustrated in Figure 1.

The overall availability of the link, (Pavail), is given

by averaging the qualification probability of each metric,

where m is the number of metrics.

Pavail =
m∑

i=1

1/m ∗ Pqual(i), (1)

We consider the link to be acceptable for the application

if its predicted performance meets the QoS requirements of

all relevant metrics. Accordingly, we rate the link as avail-

able if Pavail ≥ 50%. It is possible that the overall avail-

ability is greater than 50%, even when the link is not qual-

ified for one or more of the metrics. In this case, we artifi-

cially assign the overall availability to 40%, so that the link

is considered unavailable.

3. Results

We perform a simulation study to evaluate the feasibil-

ity and accuracy of the prediction algorithm using ns-2.28.

We implemented an interface interference model, the link

measurement mechanism, and the prediction algorithm.

We use a topology that includes two mobile devices with

both WiFi and Bluetooth radios, as well as 10 Bluetooth

devices and 20 WiFi devices. The two multi-radio devices

communicate using a VoIP application running over UDP,

since this application uses all three of the link quality met-

rics – throughput, delay, and jitter. We note that the choice

of application and transport protocol does not affect the pre-

diction accuracy.

The simulation topology is designed so that the link qual-

ity of the two radios varies due to both mobility and interfer-

ence. To simulate mobility we move the multi-radio devices

in and out of range of each other. To simulate interference

we turn on and off the Bluetooth and WiFi devices.

To evaluate the accuracy of our prediction, we compare

the predicted availability curve to an ideal curve generated

with the benefit of hindsight as we look at all of the mea-

surements, rather than just the recent past. Given an ideal

curve, we then compare it to the prediction curve and cal-

culate the prediction error rate, which is the ratio of the

number of incorrect predictions to the total number of pre-

dictions made during the simulation. The prediction is de-

fined as incorrect if the link is estimated to be unavailable

while it is actually available based on the ideal curve, and

vice versa.

We also calculate the prediction overhead by measuring

the throughput loss and the power consumption due to mak-

ing queries.

3.1. WLSR Weights and Window Size

The performance of the WLSR algorithm depends on

the weighting of each metric and the measurement window

size. To determine the proper settings for these parameters,

we performed a full factorial experiment. We simulated sce-

narios where both the Bluetooth and WiFi radios drop out

periodically, and where both radios encounter interference

from other nodes with a single radio.

For each scenario, we run an experiment with each pos-

sible combination of the WLSR weight κ and the measure-

ment window size n. The weight κ varies from 1.0 to 1.6,

in increments of 0.1, and the window size n varies from 5
to 30, in increments of 5. We repeat each experiment five

times. Because of space constraints, we omit the table of re-

sults. With other parameters we tested the prediction error

rate either increases or remains the same.

When responsiveness is preferred, a small measurement

window and a larger weight work best. This gives the high-

est weight to the most recent of a small number measure-

ments, so that the prediction is likewise more responsive.

As stability is preferred, a larger window and smaller weight

begin to perform better.

Based on our results, we believe a measurement window

size of 10 and a WLSR weight of 1.3 provide a good bal-

ance between reactivity and stability. These settings per-

form well across all the experiments.



Prediction Algorithm WLSR EWMA Signal

Mobility
WiFi 1.62% 2.71% 1.44%

BT 6.13% 13.62% 11.09%

Interference
WiFi 12.30% 17.75% 22.45%

BT 9.18% 9.35% 9.68%

Combined
WiFi 10.90% 15.35% 18.64%

BT 6.62% 12.52% 12.71%

Average 7.79% 11.88% 12.67%

Table 1. Prediction accuracy comparison

3.2. Comparison to Other Algorithms

We evaluate the WLSR prediction algorithm by compar-

ing it to another two alternative algorithms: Exponential

Weighted Moving Average (EWMA) and a prediction based

on the signal strength only.

We test three scenarios: mobility, interference, and a

combination of both conditions. We run each simulation

for 240 seconds, with one link measurement query per sec-

ond for each radio. We repeat each simulation five times

and combine the results.

We show the average prediction error for this experiment

in Table 1. In almost all scenarios, the WLSR algorithm is

able to predict link quality more accurately than the other

two algorithms. The only exception is the prediction for

WiFi in the mobility scenario, where the error rate of WLSR

is only slightly higher than that of signal strength model.

This is a good result for WLSR, since signal strength pre-

diction is mainly useful for mobility prediction, and WLSR

does nearly as well. On average, more than 90% of the pre-

dictions using WLSR are correct, as compared to the ideal

curve.

To further illustrate the prediction accuracy of the WLSR

algorithm, we plot one of the simulation results for the mo-

bility scenario in Figure 2, using a randomly selected repli-

cation seed. The measurement curve represents the actual

link status considering all relevant QoS metrics, either avail-

able (shown as 1.0) or unavailable (presented as 0.0). The

ideal curve is generated from the measurement and based

on user’s preference. We then show the predictions for all

three algorithms. On each prediction we plot the threshold

at 0.5; if a prediction is above the threshold then the link is

predicted to be available during that period.

This figure shows why the WLSR prediction is more ac-

curate than the EWMA and signal strength algorithms. It is

able to closely match the ideal curve, with very little latency

when changes occur. In general, the EWMA algorithm re-

acts more gradually to changes in link status, taking an extra

second or two to react. Using only signal strength is so sen-

sitive to rapid changes in Bluetooth mobility that it does not

provide the stability we prefer during these periods.
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Figure 2. Bluetooth link quality prediction
during mobility

Transport UDP TCP

Workload Light Medium Heavy –

Throughput -0.05% -0.12% -0.40% -0.19%

Power (queries) 0.0034% 0.0034% 0.0032% 0.0030%

Power (workload) 0.0066% 0.0144% 0.0592% 0.0660%

Table 2. Link measurement overhead

3.3. Overhead

Periodic link quality measurements impose overhead in

terms of throughput and power consumption. To evaluate

overhead we generate UDP traffic under three workloads

– light (10 packets/s), medium (100 packets/s) and heavy

(1000 packets/s), with 128 byte packets. For a fourth work-

load we generate a constant stream of TCP traffic. In all

cases we measure throughput both with and without queries

and then calculate throughput loss as a ratio. We calculate

the power consumed as a percentage of the overall battery

life per minute, and we do this separately for the queries

and the background workload. The initial battery level is

10 Watt-hours, which is the typical battery level for PDAs.

Table 2 shows the average overhead as computed from five

replications of the experiments.

These results show that the overhead for link quality

measurements is very low, with almost negligible through-

put loss and power consumption. In all cases, the through-

put loss is below 0.5%, and the power consumed is gener-

ally small compared to the workload. The throughput loss

during light UDP loads is smaller because the link is usually

not busy when queries are sent.

4 Dynamic Radio Selection

To illustrate the utility of our prediction algorithm, we

use the results of the prediction to dynamically select the
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Figure 3. Dynamic radio selection

best available radio. For this simulation we use the Qual-

ity of Transport (QoT) architecture [4], which acts as a

shim between the application/session layer and the trans-

port layer. QoT always chooses the best available radio,

based on the results of link prediction algorithm and user

preference. For example, if two radios provide a connec-

tion between the devices, then the user may prefer to favor

power conservation or throughput.

The first scenario we consider is when the user prefers

high throughput. While the multi-radio devices communi-

cate, 20 pairs of WiFi nodes transmit nearby, simulating in-

tensive interference for a 15 second interval, at 20s, 50s,

and 80s. The simulation runs for 120 seconds. The multi-

radio devices should be able to switch to Bluetooth when

the WiFi radio becomes unavailable.

Figure 3 compares the performance of radio selection

when using either the WLSR, EWMA, or signal strength

prediction algorithms. We include the case for no radio

switching (staying with WiFi the entire time) to illustrate

the overall benefit of using both radios. Both the WLSR

and EWMA algorithms improve performance significantly,

whereas switching based on signal strength has almost no

effect. Because the measured signal strength still satisfies

the transceiver capture level, it does not handle interference

well.

When comparing WLSR to EWMA, WLSR has shorter

latency in the prediction algorithm, allowing radio selection

to happen faster. Thus, although both algorithms result in

throughput dropping for a short period, using WLSR has a

tangible benefit. The overall benefit is reflected in Table 3,

which summaries the throughput gain seen by each mech-

anism. Using WLSR improves throughput by 32% in this

case, as compared to EWMA, which gains 22%.

The second scenario we consider is when the user prefers

power savings. While the multi-radio devices communi-

cate, they move out of range of the Bluetooth radio for a

period of 30 seconds. This happens twice, once at 15s and

Prediction Method None WLSR EWMA Signal

Total MBytes 5.33 7.07 6.52 5.33

Throughput (kbps) 358.88 475.49 438.05 358.88

% Gain - 32.49% 22.06% 0.00%

Table 3. Throughput improvement

Prediction Method None WLSR EWMA Signal

Power (Joules/s) 21.28 12.45 12.88 12.08

% Savings - -41.50% -39.47% -43.23%

Table 4. Power savings

again at 75s, with the simulation running for 120 seconds.

We again compare the three prediction algorithms.

As shown in Table 4, all three algorithms provide signif-

icant power savings when compared to using the WiFi ra-

dio the entire time. In this case, using signal strength alone

works very well, but the WLSR algorithm is almost as good.

Since WLSR also handles interference well, these results

show it is a good fit for a radio selection architecture.

5. Future Work

Our future work will focus on dynamically adjusting the

link query interval, so that we can further lower overhead

and power consumption during stable periods. We are also

continuing to work on efficient radio switching algorithms.
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